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Lattice dynamics and structural instabilities of solid biphenyl 
and p-terphenyl-effect of pressure 
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Rennes a d e x .  France 
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&tract. "he model calculations of lattice dynamim in solid biphenyl and terphenyl 
for different temperatures and pressures are presented. We develop a model that 
Biplicitly W e a l s  interphenyl motion in the selfsonsistent phonon approximation. "he 
phase transition is interpreted as an instability (zero lleequency at finite wave vector) 
of Ule twist mode with weak coupling to the extemal modes of the molecule. The 
calculations show fairly good agreement with experimental data. 

1. Introduction 

Since the discovery of the phase transitions in crystalline parapolyphenyls (biphenyl, 
p-terphenyl, . . . ), connected with the instability of the intramolecular modes [1], these 
compounds have been the subject of extensive studies, both theoretical and exper- 
imental; this is especially true of the incommensurate phases of biphenyl 121. It is 
now well understood that these phase transitions are the result of competition be- 
tween the intramoleeular forces that tend to twist phenyl rings and the intermolecular 
forces that stabilize the planar conformation. The result of this competition is the 
instability of the mean planar molecular conformation in the high-temperature phase. 
It is obvious that the intramolecular mode associated with interphenyl motion has 
a low frequency and is strongly temperature dependent. ?he usual risid molecule 
approximation [3] does not apply here. Since the molecular conformation changes at 
the phase transition, different approximations that take soft molecules into account 
14, 51 are also inapplicable here. The first calculations for phonons at p = 0 for a 
solid biphenyl in the rigid phenyl ring approximation were performed by Burgos d af 
[q; these calculations showed the importance of the mixiig of internal and external 
biphenyl modes. However, the phase transition in biphenyl takes place far away from 
Q = 0,  and full lattice dynamics calculations are necessary. Subsequent models 17, 
81 presented lattice dynamics calculations in the whole Brillouin zone using the non- 
rigid molecule approximation. The general conclusion was that the phonon branch 
along the I* direction has a deep minimum, eventually developing into the soft mode. 
Another model was presented by Raich and Bernstein [9] in which the authors con- 
sidered the torsional degree of freedom only, and, starting from the single particle 
susceptibility of a one-dimensional rotor, they looked for the lattice instability. Heine 
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and Price [lo] developed a model of mutually intermeshed phenyl. ring rotations that 
lead to an incommensurate structure caused by orientation frustration. The model 
was then extended to elevated pressures in order to obtain a phase diagram [ll]. 

A priori the same instability should appear in all polyphenyls. Indeed, all these 
compounds have similar crystalline structures in the high-temperature phase ( P 2 ,  /U) 
[l]. In fact the paper by Raich and Bernstein [9] tries to explain the phase transitions 
in biphenyl and p-terphenyl in a consistent way. However, there are substantial dif- 
ferences between these two phase transitions. The phase transition in biphenyl is dis- 
placive, with a well-defined soft mode [l, 21, whereas the phase transition in terphenyl 
is of the order-disorder type with a critical relaxation mode [l]. Applying hydrostatic 
pressure enhances displacive character of the phase transition. In biphenyl the tran- 
sition remains continuous and the displacive limit (T, = 0) is reached at pressures 
just below 2 kbar [12]. With increasing pressure the phase transition in p-terphenyl 
changes from order-disorder to displacive iype [12, 131. However, the transition he- 
wmes more and more discontinuous and a thud phase has been discovered below 
the triple point [l]. Finally, the low-temperature phases of biphenyl are incommen- 
surate with wave Vectors inside the Brillouin zone while in p-terphenyl they become 
superstructure with wave vectors at the zone boundary. In this paper we present 
lattice dynamics calculations of biphenyl and p-terphenyl that are a continuation of 
the model formulated earlier by Plakida er a1 [ 141. 
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2. Model 

We performed lattice dynamics calculations in the rigid phcnyl ring approximation, 
for which the potential nccded was: 

where Vm,w represents intermolecular interactions while Ynrm represents interactions 
between phenyl rings of the same molecule. The latter is harmonic except in the case 
of torsional degrees of freedom where we apply the double-well potential: 

where A < 0 and E > 0 and are the parameters to be adjusted. A similar po- 
tential was used in the paper of Benkert er a/ [IS]. In the next step we make the 
approximation [16]: 

P 4  7s P*(L?') (3) 

where 

(4) 

is the mean square amplitude of the torsional motion at the temperature T and 
g L ( W )  is the density of states projected onto the torsional degree of freedom. Hence, 
the effective intramolecular potential for the torsional motion is clearly seen to be 
temperature dependent. It is also coupled to the whole phonon system via g, (w) .  
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The other degrees of freedom are temperature independent. Since it is just the local 
part of the potential that depends on the temperature, unlike in other self-consistent 
phonon models, there is no thermal expansion of the lattice. All the calculations 
were performed for deuterated samples for comparison with the very rich results of 
neutron scattering. As is explained below, some of the calculations were also done 
for nondeuterated (hydrogenated) substances (e.g. quantum effects under pressure). 
In our approximation the potential is the same in either case. The main difference 
between our model and those of Heine and Price [lo] and Raich and Berstein [9] 
is that we take into account all modes that may play a role in the phase mansition. 
As will be shown in section 5 this is necessary for understanding the incommensurate 
structure. The quantum statistics in (4) is essential for the understanding of the phase 
diagram at the low-temperature limit. 

3. Potential parameters and calculation procedure 

The intermolecular part of the potential was expressed as a sum of the atom-atom 
interactions of the form '6 - exp' using the parameters given by Williams [17]. The 
parameters are the same as those used in the paper by nkeuchi er a1 [q and only 
slightly different from the ones used by Heine and Price [lo]. For torsion mea- 
surements the parameters A and B were adjusted at two points on the p-T phase 
diagram of solid biphenyl: p = 0, T = 38 K and p = 1 kbar, T = 20 IC The values 
of the parameters are: 

A = -33.956 B = 1610.3 (y2)  = 0.003 at T = 38 K (5) 

in energy units of kcal mol-' and angle units of radians. It must be stressed that 
our intramolecular potential is an effective one. Due to the fact that our parameters 
were adjusted with the intermolecular part of the potential in a self-consistent way, 
one should not compare them directly with other models (e.g. see table 3 from 
(1.51). Our parameters correspond to the effective twist potential with two minima at 
f5.9", with the barrier between the hvo being 0.09 kcal mol-'. All the calculations 
were performed at the interaction energy minimum with respect to the structural 
parameters. This minimum depends on pressure, hence the unit cell parameters 
and the molecular orientations depend on pressure as well. When performing the 
pressure sensitive calculations we are interested in the Gibbs free energy rather than 
the Helmholtz free energy. We have to minimize the expression: 

where 'U is the unit cell volume, p is the pressure and (V) the effective potential. The 
potential parameters themselves do not depend on pressure. As mentioned earlier, 
there is no temperature dependence of the unit cell or of the molecular orientation. 
Lattice dynamics calculations were performed for the 128 points in the Brillouin zone 
defined by Chadi and &hen [18]. This method was found to be the most effective 
by Bonadeo and Burgos [19J All points have the same weight and take the values: 
:,$, i, 5. The phase transition was interpreted as a point in the p-T plane where 
W (  q )  IS equal to zero for some wave vector, q. 
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4. Results 
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4.1. Phonon dirpersion curves 

As mentioned in the previous section, the unit cell parameters depend on pressure 
but not on temperature. The calculated pressure dependence of the unit cell pa- 
rameters a , b  and c is shown in figure l. For all three directions the calculated 
compressibility coefficients are roughly the same, varying from 0.002 to 0.004 kbar-', 
and remain in very good agreement with the results of the neutron experiment [ZO, 
211. The changes with pressure of the monoclinic angle p are very slight. The phonon 
dispersion curves for biphenyl at p = 0 are shown in figure 2 They are plotted for 
the wave vector q along the symmetry axis b' and for the Brillouin zone boundary. 
For clarity, q 11 6' phonon modes are divided according to their being symmetric or 
antisymmetric with respect to the twofold axis. It is clearly seen that the phonon 
branch that is symmetric with respect to the twofold axis has a deep minimum at 
about q = 0.46". This result is in agreement with the experimentally determined 
structure of phase 111 1221. So the structure of phase 111 is Pp rather than Py2"". 
However, the lowest point on the w ( q )  surface is at the general point in the Bhhouin 
zone: q, = (-0.02,0.40,0.22). This value should be compared with the experimen- 
tally found modulation vector of the biphenyl phase 11, which is incommensurate; the 
experimental value is: (-0.07,0.45,0.13) [23]. As was explained in section 2, all 
the interphenyl modes were calculated. For clarity, only the lowest eight branches 
are plotted; these include external modes of biphenyl molecules and the two torsional 
modes. Those modes inside the Brillouin zone are mixed-type modes. Close inspec- 
tion of the eigenvectors of the dynamical matrix allows us to see the character of a 
given mode. A mode that goes soft at q = qc is predominantly torsional in character, 
admixed with translation of the molecule along its long axis and slight reorientation 
of the whole molecule. The eigenvector of the soft mode is explicitly given in the 
appendix. The detailed shape of the minimum of the dispersion surface is shown in 
figure 3. It is clearly seen that the dispersion along the direction b* is much stronger 
than that along a' and c'. The slope of the soft phonon branch at T = T, should 
roughly correspond to phason excitation in phase 11. The dispersion law in the vicinity 
of q, can be perfectly parameterized in the following way [24]: 

The calculated values: eH = 6 , a ,  = 27 and aL = 7 should be compared with the 
experimental ones: aH = 4, ciK = 22 and aL = 1 in units of THzZA2 1241. 

4.2 Pressure dependence 

As explained earlier, pressure enters the calculations via minimization of the structure. 
The pressure dependence of the phonon modes b weak and can be explained by 
the Griineisen parameter. The soft mode is the only one for which the pressure 
dependence is dramatic. Its behaviour at T = 3 K is shown in figure 4. Again, very 
good agreement with the experiment is observed, and the value 0.1 THzz kbar-' is 
obtained [ZO]. 
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Figure Z Phonon dispersion awes for biphenyl at p = 0 and T = 38 K 

4.3. Temperature dependence 

The only mode in our model that depends on temperature is the torsional one. Figure 
5 shows how the soft mode at p = 0 depends on temperature. The temperature 
dependence of w2 is obselved to be almost linear. 

4.4. Phase diagram 

The phonon calculation for different temperatures and pressures allows us to establish 
a phase diagram on the p-T plane. The phase transition is located at the zero- 
phonon frequency at finite wave vector q,. As already mentioned in section 3, the 
parameters A and B of the local torsional potential were fitted so that the phase 
transitions occur at p = 0, T = 38 K and p = 1 kbar, T = 20 K The full 
diagram is presented in figure 6; its character agrees very well with the experimental 
one 124). Fbr temperatures greater than 20 K, T, decreases linearly with increasing 
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pressure; below 20 K it decreases more rapidly and finally reaches the quantum limit 
p = 1.5 kbar at T = 1 K. This low temperature behaviour is a direct consequence 
of the zro-point motion of (4). Assuming the same potential parameters for non- 
deuterated biphenyl we calculated the phase diagram for C,,H,,; the result is also 
shown in figure 6 In this case, the phase transition occurs systematically at lower 
temperatures than for the deuterated substance. This might be a direct manxestation 
of the fact that some other effects (e.g. the C-H bond lengths being slightly bigger 
than G D  distances) were neglected . The phase diagram for the hydrogenated 
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compound was not measured in detail, but at p = 0, T, = 40 K the phase transition 
occurs 2 K higher than for the deuterated substance. Because of quantum effects 
dominant at low temperatures one can expect crossing of the phase boundaly lines 
for some temperatures. Then, for T, zz 0 K, p ,  for the hydrogenated substance 
should be lower than for the deuterated one. In the classical approximation which 
is valid for T, > wD the critical temperature T, does not depend on the isotope 
substitution. The detailed discussion of the pressure inAuence on the phase transition 
given in [U] is fully confirmed by our calculations. We hope to deal with the problem 
of the phase transition between phases I1 and 111 in another paper. 

2.0 
40 

0 5  L O  1 5  
4%:. , , , , , . I I ,  ~ I . .  , . , .  . , . L , I 1  1 ,  I I , . . , , I ~ 

3 
I 

biphenyl-dlo .-!.!L. biphenyl-h,* 

pressure(kbar-s) 

~ FIgurt 6 Calculated phase diagram of 
biphenyl. Experimental points are taken 
from [ZO]. 

5. The strueture of phase n 
Knowledge of the critical wave vector qc and the eigenvector of the sbft mode allows 
us to explain the low temperature structure of biphenyl. Since the wave vector is 
at a general point in the Brillouin zone of the monoclinic space goup, the full star 
consists of four arms, and the active representation is four dimensional. The arms 
are 

91 =(4, ,4 ,9Qz)  92=(-4,>9,>--4, )  93= -21 94  = -qz. (8) 

The free-energy density has the form discussed by Cowley [26]: 

F = Fo + $ a ( T -  Tc) (Q(q l )Q(d  C Qtqz)Q(q4))  + b(Q2(qi)QZ(qa) 

f Q2(qz)Q2(q4)) + C & ( ~ ~ ) Q ( ~ Z ) Q ( ~ ~ ) Q ( P ~ )  (9) 

where 

Q ( d  = Q Y d  and Q(d = Q*(d (10) 
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By substituting: 
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Q(sl) = Ale'' 

Q(d = A d b  

into (9) we obtain the simplified form of the free-energy density: 

F =  F , t ~ a ( T - T , ) ( A f f A ~ ) f b ( A ~ t  A ; ) + c A f A i .  

The minimum of the free energy is realized by the following solutions: 

lor b > 0 , c  > 2b 

for b > 0,-26 < c < 26 

for all other b and c 

A ,  + O,A, = O  or A, = O,A, $ 0  

A ,  = A, 

A ,  = A, = 0. 

Solution (16) corresponds to the high-temperature symmetric phase. Solution (14) 
corresponds to the bidomain structure which is stripe-like. Solution (15) corresponds 
to the monodomain structure with bidimensional modulation which is quilt-like. On 
the basis of their own model and a Landau-type expansion, Benkert and Heine [27] 
argued that the stripe-like structure is favourable. The phenomenological treatment 
of Parlinski ef al [ZS] also suggested a stripe-like structure. Finally, the experimental 
work of Launois ef at 1241 supports the stripe-like structure in phase I1 of biphenyl. 
We investigated which of these has lower energy by calculating the potential energy 
of a given structure using the distortion given by the eigenvector of the soft mode. 
In our calculations both intramolecular and intermolecular potentials contribute to 
the fourth-order term in free energy, so the relation between the constants b and c 
is rather complicated. Since the aanslational symmetry in the incommensurate phase 
is lost, additional integration over the phase shift was performed: 

where k and k' label molecules and r is the phase shift. More details about compu- 
tational aspects are given in the appendix. The results of the calculations are shown 
in figure 7. The upper curve represents the quilt-like structure while all other curves 
represent stripe-like structures at different temperatures. Evidently the calculations 
show that the structure with unidimensional modulation has lower energy. It should 
be pointed out that neglecting degrees of freedom other than torsion leads to a 
quilt-like structure. The mwt striking feature is that at T = T, the energy plot has 
a double minimum character. This means that the expectation value (Q) # 0 at 
T = T, . Exactly why we obtained a discontinuous phase transition starting from 
the Landau Hamiltonian is not obvious. Bruce [29] discussed the problem and finally 
concluded that this was an artifact of the self-consistent phonon approximation. The 
maximal twist angle between phenyl rings estimated from the calculation at 20 K is 
2 100. 
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stripe-like SINCIUES at diiierent temperatures. 

6. P-terphenyl 

The same model was applied for p-terphenyl under pressure. The model is supposed 
to work well for a displacive-type phase transition, of which pterphenyl under pres- 
sure is one case [ZO]. However the model predicts a continuous phase transition, while 
it is known from experiment [I31 that the phase transition in p-terphenyl becomes first 
order when pressure is applied. Nevertheless phonon dispersion curves show quite 
good agreement with experiment In particular, there is one phonon branch in the 
BriUouin zone with almost no dispersion between points (4, 4,O) and (4,$,4) that 
has very low energy. In fact there is a triple point on the phase diagram at T = 70 K 
and p = 3.5 kbar joining the phase boundary between phases I, I1 and 111. The 
phase transition between phases I and 111 takes place at q = (4, 4, 4); the phase 
transition between phases I and I1 takes place at q = (4, The point symmetries 
of phases I1 and I11 are the same; they differ by translational symmey only. The 
phonon dispersion curves for pterphenyl at p = 4 kbar are shown in figure 8 One 
can easily see all the similarities and differences between this and biphenyl. It should 
be noted that only external modes and two twist modes are plotted for clarity. The 
very small dispersion on the Brillouin zone surface perpendicular to b' (see figure 8) 
indicates weak coupling between molecules in the ac plane. With all the limitations 
mentioned above we can calculate the temperature of phonon instability. Tamking the 
same potential parameters A and B as for biphenyl we obtain the T, = 111 K at 
p = 0, which is much lower than the experimental T, = 180 K 

I .  Conclusions 

The model presented here accurately describes the phase transition between the high 
temperature phase I and phase 11, which is incommensurate in biphenyl. It estimates 
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Figure 8. Phonon dispersion curve for pterphenyl at p = 4 kbar. 

the critical wave vector, pressure and temperature dependence of the soft mode quite 
well and allows us to reproduce the phase diagram. The phonon dispersion of the 
soft mode is very well reproduced. The model also provides information about the 
structure of phase 11. Although the para pterphenyl case is more complicated, the 
model does give a qualitative explanation of the phase transitions in this substance. 
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Appendix 

The resuh of the lattice energy calculations presented in figure 8 were obtained as 
follows: the soft phonon is characterized by the wave vector 

q1 = (-0.02,0.40,0.22) (AV 

and by the (complex) eigenvector: 

-0.003 
UP"(1) = 0.046 

('42) 

-0.004 
U Y ( 2 )  = ( 0.010 ) Up"(2) = -0.056 

-0.035 
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and by U i ( m )  where j = (trans, rot, tors) and m = 1,2 for the wave vector q,. The 
wave vectors q, and q, are symmetry related as are U, and U,. The Uud'(m) and 
U"( m) are expressed in the orthogonal crystal frame a ,  b. c' and are normalized to 
mass and moment of inertia respectively: 

(uj(m))+M,(m)uJ(m) = 1 (A4) 

where M,,, is the mass, M,, is the moment of inertia of the whole molecule, m, 
and Mms is the moment of inertia of the torsional mode. 

We then displace the molecule m in the unit cell 1 : 

u'(m,L) = amplitude* ( U;(m)exp(iq,(Z t 2, t q1)) ('w 
in the m e  of unidimensional modulation, or 

uj(m,  1 )  = amplitude * ( U i ( m )  exp(iq,(Z + q,,) t pl) 

t U;c")exP(iqAz f .,I t Pd) (4 
in the case of bidimensional modulation. The free phases 'pl and 'p, reflect the 
fact that the modulation is incommensurate. In the next step we calculate the lattice 
energy as a sum of rite atom-atom interaction and the intermolecular energy 

or 

for unidimensional and bidimensional modulation respectively. The integration was 
carried out by means of the ten-point Gaussian quadrature. 
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